Producing steel without emitting CO2 is perhaps possible thanks to hydrogen

Producing steel also means emitting a lot of CO2 into the environment. It is estimated, in fact, that the steel industry itself generates between 7 and 9% of CO2 emissions among all those generated through the use of fossil fuels, as noted in a new statement published on the CORDIS website.

Of course, several studies are underway to limit CO2 production when steel is produced, but not many of them have achieved results that suggest real applications. Now a new project, called H2Future and funded by the European Union, aims to discover new energy sources to achieve, albeit gradually, a real decarbonisation of steel production. In this regard, it is planned to use hydrogen as a renewable electricity source.

A pilot plant has already been set up in Linz, Austria, which has a capacity of 6 MW of electricity from renewable sources to produce up to 1200 m³ of green hydrogen. The press release on the launch of this new plant speaks of “an important milestone for the industrial application of electrolysis” in the steel industry, refineries, fertiliser production and other industrial sectors.

The new plant is based on the technique of electrolysis, a phenomenon in which water is divided into hydrogen and oxygen by electric current, as explained in the press release on the project website: “PEM technology works using a proton exchange membrane as the electrolyte. This membrane has a special property: it is permeable to protons but not to gases such as hydrogen and oxygen. This means that in a PEM-based electrolyzer the membrane acts as an electrolyte and separator to prevent the mixing of gaseous products.”

Heartburn medication useful to fight labial herpes according to study

A new combination of drugs that could be helpful in treating lip herpes more effectively has been developed by a team of researchers at the University of Kent.
The study, published in Frontiers in Microbiology, explains how researchers tested different drugs by applying them to various cell cultures and discovered how some drugs used for heartburn improve the effectiveness of antiviral acyclovir. The latter is the drug used to fight the Herpes simplex virus.

The drugs used by researchers in combination with acyclovir are drugs treated for heartburn and are included in the category of proton pump inhibitors. They also include omeprazole.
Herpes simplex can be very worrying for people with weak or suppressed immune systems. In these people it can cause life-threatening conditions or even blindness as the infected person can transfer the virus from the lips to other parts of the body including the eyes (a process also called self-inoculation). It can lead to conjunctivitis or keratitis in the eyes and this can worsen, especially if the patient continues to rub the eye at the point of injury.

The drugs to treat heartburn were combined by researchers, led by Professor Martin Michaelis of the School of Biosciences, with acyclovir on cell cultures. The researchers found that they reduced the spread of the aforementioned virus in cells and the maximum effect was caused by omeprazole.
“The combination of these two drugs could significantly improve the broader treatment of the herpes simplex virus,” says Martin Michaelis of the University of Kent.

Bacteria engineered to save bees from viruses and pests

Bacteria genetically modified to protect bees from the deadly tendency that is characterizing them and that is worrying not only the scientific world. Even in the United States, honey bee colonies are decreasing so much that, during last winter, beekeepers had to give up more than 40% of their colonies, the highest rate since surveys began 13 years ago.

Nancy Moran, Professor of Integrative Biology, is working with colleagues to engineer particular strains of bacteria to be introduced into the bowels of honeybees. These bacteria act as “biological factories”: they trigger the immune system of bees to protect themselves from the deformed wing virus, one of the two main causes of their collapse together with varroa mites, parasites of bees. These two conditions very often come together: the more the mites feed on bees, the more the virus spreads, which makes bees increasingly vulnerable to various pathogens in the environment.

This is a method that is not as complex as it might appear: the engineering of bacteria in the laboratory, once the method is completed, is not at all prohibitive, just as it is not prohibitive to inoculate them into the body of bees by causing them to spread into colonies. The implication of such a method is direct, as Moran herself states. It is also the first time that the bee microbiome has been genetically engineered to improve bee health.

During the tests, bees with the engineered bacterium in their bodies showed a 36.5% higher probability of surviving after 10 days than control bees. At the same time, Varroa mites feeding on bees treated with the engineered bacterium were about 70% more likely to die by day 10 than mites feeding on control bees.

BTW, on the topic of bees, please check out this article:

Why Vegans Don’t Eat Honey (And You Shouldn’t Either)

Cases of childhood diarrhoea in Africa linked to the climate phenomenon in La Niña

A curious discovery was made by researchers at Columbia University’s Mailman School of Public Health. The researchers, conducting a study in Botswana, found that spikes in childhood diarrhea are associated with climatic conditions related to the La Niña phenomenon.

Diarrhea can be fatal in low and middle income countries with underdeveloped medical networks, especially in children under the age of five. In Africa, diarrhea rates in children under five are particularly high and account for 1/4 of all deaths caused by diarrhea.

Researchers have found a connection with the La Niña phenomenon. The latter is an atmospheric phenomenon linked to the larger phenomenon called El Niño-Southern Oscillation (ENSO), an irregular variation in the winds and surface temperatures of the oceans in the tropical eastern Pacific area.

ENSO is linked to both La Niña and El Niño: with the former, the ocean temperatures are warmer and with the latter colder. This phenomenon can affect weather conditions in various parts of the world such as temperature, wind and precipitation.

Analyzing statistics on childhood diarrhea (the one that affects children under five) in the Chobe region of northeastern Botswana, researchers have found that the La Niña phenomenon is associated with colder temperatures, increased rainfall and more frequent flooding in the same rainy season.

This same climatic phenomenon, as the researchers found, is associated with a 30% increase in the incidence of childhood diarrhea in the rainy season from December to February.

According to Alexandra K. Heaney, a researcher at the University of California at Berkeley, one of the authors of the study, the results of this research show that the phenomenon of ENSO can be used as a medium-long term forecasting tool for the spread of childhood diarrhea in southern Africa.

Specifically, when this climate phenomenon advances, it would be appropriate to accumulate more medical supplies, such as hospital beds, and more health workers in these areas to manage the increased incidence of this childhood disease.

Diarrhea can be caused by many different pathogens, including viruses, protozoa bacteria, and exposure to these pathogens itself can be facilitated by weather conditions: more rain and flooding means more contact with water, which is an ideal vector for some of these pathogens.

Dragging effect of space-time detected in white pulsar-dwarf system

If a very massive object, such as a planet or star, rotates, it literally drags the surrounding space-time with it. It is a phenomenon predicted by Einstein’s general relativity also known as the “dragging effect” or the Lense-Thirring effect (from the two Austrian physicists Josef Lense and Hans Thirring who in 1918 first derived the effect within general relativity).

This effect also exists on Earth in relation to its proximity to the Sun but in our case, it is extremely small so that it has been very difficult to measure for years. The effect, however, is more pronounced with heavier and more massive objects, such as white dwarfs or neutron stars. And it is by studying a binary system composed of a white dwarf and a pulsar that researchers have found direct evidence of this effect.

The researchers, led by Vivek Venkatraman Krishnan of the Max-Planck-Institut für Radioastronomie, have in fact observed a pulsar characterized by a narrow and fast orbit around a white dwarf that has a mass similar to that of the Sun. The pulsar makes a full circle around this white dwarf in less than five hours, whizzing at a speed of over one million km/h. The two bodies are very close together and less than the diameter of the Sun.

Measuring the timing of the arrival of the very short pulses of the pulsar towards Earth, data found over a period of almost twenty years, the researchers concluded that it is the Lense-Thirring effect that causes a sort of drift, slow and long term, of the way in which the pulsar and the white dwarf orbit around each other.

It is the dragging of the same space-time that causes the orientation of the pulsar to slowly change while it revolves around the white dwarf. Among other things, this new study confirms a hypothesis, contained in other previous studies, according to which white dwarf of this binary system, called PSR J1141-6545, was formed before the pulsar. Such binary systems are considered quite rare.

This study, among other things, could also be useful to understand what is inside a white dwarf: despite decades of research, it is not yet known how matter is arranged inside this very strange cosmic object given the conditions inside it, conditions of very strong gravity to which the same matter is subjected and which are not reproducible in the laboratory.

New device uses waste electricity from plants and communicates via satellite

A device that collects electricity from cultivated fields and sends information about the same crops via low-power satellite signals was created by the Dutch company Plant-e and Lacuna Space. It is a project carried out as part of Advanced Research in Telecommunications Systems (ARTES), a project of the European Space Agency.

The device can provide information on soil and air humidity and temperature, important information for farmers to keep crops under control. The electricity needed to operate these devices comes from the fact that plants produce organic matter through photosynthesis.

This process, however, does not use all this organic matter to grow plants: part of it is stored in the soil through the roots. Right under the soil, bacteria break it down and release electrons as a sort of “waste.”

The device is capable of collecting these electrons to assimilate that small level of electrical current in order to function and transmit signals.

There is talk of a “new era in sustainable satellite communications,” as Rob Spurrett, the CEO of the company that created the device, defines it. He suggests that the device itself could be used in those regions of the world that are difficult to reach, where there is not a good supply of electricity and an Internet connection and where it is not possible to use solar energy.