Connect with us

Science

Scientists create a new method to discover antiobiotics

Published

on

A method for detecting more effective antibiotics that can be hidden in ordinary dirt has been devised by a group of researchers from McMaster University who have published their work in Nature Biotechnology. This method can be used to extract rarer or harder to extract compounds that can be useful for developing new antibiotics.

Today’s antibiotics actually come mainly from bacteria and fungi living in the soil, as Elizabeth Culp, one of the researchers who carried out the study, points out. This method describes how the most common antibiotics produced by soil bacteria can be removed to rediscover the “hidden” ones that could hardly be identified by the “classical” methods.

The method developed by researchers is based on a tool based on CRISPR-Cas9 technology. Researchers have tested the new method on different soil bacteria that produce antibiotics. With this method, they succeeded in eliminating the compounds that form the basis of two common antibiotics, streptomycin and streptomycin.

By subjecting the modified bacteria to a new screening without these components, the researchers discovered new compounds. “This simple approach led to the production of several antibiotics that would otherwise be masked,” said Culp himself. “We were able to quickly discover rare and previously unknown variants of antibiotics.”


See also:

https://www.nature.com/articles/s41587-019-0241-9

Image source:

https://www.healthmarkets.com/wp-content/uploads/2016/11/Antibiotics.png

Kelly Owen

Kelly majored in English Literature and is responsible for assisting in proofreading, editing and research, as well as for web design and the maintenance of this website. Beyond her outstanding writing skills, she has like the rest of us a passion for science and science reporting. She is an avid reader of many scientific journals and magazines, especially Scientific American. In her spare time she also enjoys reading fiction and hopes to complete her own novel in 2020.
---
520-557-5143
[email protected]
Kelly Owen
Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Science

New device uses waste electricity from plants and communicates via satellite

Published

on

A device that collects electricity from cultivated fields and sends information about the same crops via low-power satellite signals was created by the Dutch company Plant-e and Lacuna Space. It is a project carried out as part of Advanced Research in Telecommunications Systems (ARTES), a project of the European Space Agency.

The device can provide information on soil and air humidity and temperature, important information for farmers to keep crops under control. The electricity needed to operate these devices comes from the fact that plants produce organic matter through photosynthesis.

This process, however, does not use all this organic matter to grow plants: part of it is stored in the soil through the roots. Right under the soil, bacteria break it down and release electrons as a sort of “waste.”

The device is capable of collecting these electrons to assimilate that small level of electrical current in order to function and transmit signals.

There is talk of a “new era in sustainable satellite communications,” as Rob Spurrett, the CEO of the company that created the device, defines it. He suggests that the device itself could be used in those regions of the world that are difficult to reach, where there is not a good supply of electricity and an Internet connection and where it is not possible to use solar energy.

Kelly Owen

Kelly majored in English Literature and is responsible for assisting in proofreading, editing and research, as well as for web design and the maintenance of this website. Beyond her outstanding writing skills, she has like the rest of us a passion for science and science reporting. She is an avid reader of many scientific journals and magazines, especially Scientific American. In her spare time she also enjoys reading fiction and hopes to complete her own novel in 2020.
---
520-557-5143
[email protected]
Kelly Owen
Continue Reading

Science

Hubble analyzes huge galaxy that contains more than a trillion stars

Published

on

A huge new galaxy has been observed by the Hubble Space Telescope. This time the telescope focused its attention on UGC 2885, also known as the “Rubin Galaxy,” in honour of the well-known astronomer Vera Rubin, and about 232 million light-years away from us. It is a gigantic galaxy not only because it is 2.5 times the size of our Milky Way but also because it is estimated to contain more than a trillion stars.

And these characteristics are even more remarkable considering that, as astronomers themselves report, this spiral galaxy seems to have never collided or merged with other galaxies. It simply spent its time creating many stars thanks to the considerable amount of hydrogen it has used for all these millions of years.

Because of this “quiet” nature, the galaxy has also been described by astronomers as a “gentle giant”. Even the supermassive black hole that is believed to be in the centre is half “asleep,” as it only attracts a few filaments of gas because the galaxy does not seem to feed, as all large galaxies do, on much smaller satellite galaxies and this does not bring much new material to the central black hole.

Now researchers want to understand the reasons for the underlying anomaly in this galaxy, basically how it has become so large, growing slowly, without attracting to itself almost nothing but the hydrogen of the filamentous structure of intergalactic space. Perhaps UGC 2885, in the distant past, attracted numerous small galaxies and this could be witnessed by the presence of star clusters, just what researchers are looking for inside this huge galaxy and that would explain its size.

Kelly Owen

Kelly majored in English Literature and is responsible for assisting in proofreading, editing and research, as well as for web design and the maintenance of this website. Beyond her outstanding writing skills, she has like the rest of us a passion for science and science reporting. She is an avid reader of many scientific journals and magazines, especially Scientific American. In her spare time she also enjoys reading fiction and hopes to complete her own novel in 2020.
---
520-557-5143
[email protected]
Kelly Owen
Continue Reading

Science

Artificial intelligence passes the third grade scientific test for the first time

Published

on

A software based on artificial intelligence has passed an eighth American school test (comparable to the third year of high school), according to an article in the New York Times. It is the first time that artificial intelligence has passed a test of this level.

It’s been a few years since hundreds of computer scientists entered a competition to create artificial intelligence that can pass a test of this level, but the only one to pass seems to have been the Allen Institute for Artificial Intelligence.

In fact, this Seattle Institute has created a new artificial intelligence system that seems to have passed the scientific test by correctly answering more than 90% of the questions. The software, called Aristo, is designed to mimic the logic of human decision-making.

And it is perhaps precisely for this reason that he managed to overcome not only the questions that made a “simple” information search possible (something that even Google can do now if the questions are very simple), but also questions that needed a real reasoning, essentially the classic and simple “problems” that primary or secondary school students have to solve, issues that, however, require the use of logic.

The standardized scientific tests used in schools are increasingly being used to assess the level of artificial intelligence and the manufacturers themselves see them as excellent benchmarks for understanding the progress and level their software achieves. These types of tests are considered more important than the classic tests based on games such as chess or backgammon.

The latter may, in fact, be governed by the rules to learn, but a scientific test, a series of questions that also includes the use of logic, is more difficult to overcome. Jingjing Liu, one of the Microsoft researchers who has also worked on various Allen Institute initiatives based on artificial intelligence, seems to be cautious and openly declares that it is not yet possible to compare such technology with real human students of the third degree: their ability to reason, at least for the moment, is still superior.

However, the progress that has been made with Aristo can already be used in the short term in a range of different services, ranging from the answers that an Internet search engine can provide to the various tasks that a digital assistant can perform. However, the progress made in artificial intelligence, especially in neural networks that can understand the natural language thanks to models built on the basis of huge amounts of data, does not seem to deny it.


See also:

https://allenai.org/aristo/

Image source:

https://miro.medium.com/max/4000/1*DcHlT-ImdvYaJZL7LWDUUA.jpeg

Kelly Owen

Kelly majored in English Literature and is responsible for assisting in proofreading, editing and research, as well as for web design and the maintenance of this website. Beyond her outstanding writing skills, she has like the rest of us a passion for science and science reporting. She is an avid reader of many scientific journals and magazines, especially Scientific American. In her spare time she also enjoys reading fiction and hopes to complete her own novel in 2020.
---
520-557-5143
[email protected]
Kelly Owen
Continue Reading
October 2019
M T W T F S S
    Nov »
 123456
78910111213
14151617181920
21222324252627
28293031  

Content From OutwitTrade (Our Product Review Site)

Trending

Copyright © 2019 Hplex Science News | Created with the assistance of Coding Elite.